If it's not what You are looking for type in the equation solver your own equation and let us solve it.
70-6/5x^2=7/5x^2+4
We move all terms to the left:
70-6/5x^2-(7/5x^2+4)=0
Domain of the equation: 5x^2!=0
x^2!=0/5
x^2!=√0
x!=0
x∈R
Domain of the equation: 5x^2+4)!=0We get rid of parentheses
x∈R
-6/5x^2-7/5x^2-4+70=0
We multiply all the terms by the denominator
-4*5x^2+70*5x^2-6-7=0
We add all the numbers together, and all the variables
-4*5x^2+70*5x^2-13=0
Wy multiply elements
-20x^2+350x^2-13=0
We add all the numbers together, and all the variables
330x^2-13=0
a = 330; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·330·(-13)
Δ = 17160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17160}=\sqrt{4*4290}=\sqrt{4}*\sqrt{4290}=2\sqrt{4290}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{4290}}{2*330}=\frac{0-2\sqrt{4290}}{660} =-\frac{2\sqrt{4290}}{660} =-\frac{\sqrt{4290}}{330} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{4290}}{2*330}=\frac{0+2\sqrt{4290}}{660} =\frac{2\sqrt{4290}}{660} =\frac{\sqrt{4290}}{330} $
| F(x)=3x^2+5x+1 | | m/2=50 | | 7x+4=52x-1 | | 20(v+3)-4v=4(4v+3)-13 | | a/5=100 | | Y=-8/9x | | 5(2x-9)-8(0.5-3x)=4(7x-1)-3 | | Y=-8/9x+ | | 4x^2-11x+14=-2x+9 | | 4x+29+7x-10=5x-9 | | 3/8(p-8)+1/8p=-1/2(p-7) | | 2x-(5(2x-4)-3)=7 | | 0=4m^2-4m-3 | | -a+4a-8=8a+6 | | 5x+5=6x-14 | | X+3+3x+4=5x-3 | | 3(x+1)-x-2/3=1-2(1-3x)/4 | | x^2+8x+3=3x-1 | | y^2+18y+60=0 | | -1x-7-3x+4=25 | | 5(u+1-u=3(u-1+7) | | 5(u+1-u=3(u-1+7 | | 3(y-9)-4=-7(-4y+3)-7y | | 1/2x+3=14 | | 1/2x3=14 | | 2(w+4)=-9w+41 | | 23+28v=-21+14v | | 3u=28-4u | | 2(x-3)-(-2x+1)=5x-3 | | 6-3/7*h=11 | | 8x=136−9x | | 2x+20=3x-15 |